首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
  国内免费   2篇
测绘学   3篇
大气科学   3篇
地球物理   32篇
地质学   32篇
海洋学   11篇
天文学   11篇
自然地理   14篇
  2021年   2篇
  2020年   9篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   8篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   10篇
  2011年   2篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   1篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1981年   1篇
排序方式: 共有106条查询结果,搜索用时 343 毫秒
31.
Hekla and Torfajökull are active volcanoes at a rift–transform junction in south Iceland. Despite their location next to each other they are physically and geologically very different. Hekla is an elongate stratovolcano, built mainly of basaltic andesite. Torfajökull is a prominent rhyolitic centre with a 12-km-diameter caldera and extensive geothermal activity. The scope of this study is to examine the propagation of body waves of local earthquakes across the Hekla–Torfajökull area and look for volumes of anomalous S-wave attenuation, which can be evidence of magma chambers. So far the magma chamber under Hekla has been modelled with various geophysical means, and its depth has been estimated to be 5–9 km. A data set of 118 local earthquakes, providing 663 seismic rays scanning Hekla and Torfajökull, was used in this study. The major part, 650 seismograms, did not show evidence for S-wave attenuation under these volcanoes. Only six seismograms had clear signs of S-wave attenuation and seven seismograms were uncertain cases. The data set samples Hekla well at depths of 8–14 km, and south part of it also at 4–8 km and 14–16 km. Western Torfajökull is sampled well at depths of 4–14 km, eastern and southern Torfajökull at 6–12 km. Conclusions cannot be drawn regarding the existence of magma beyond these depth ranges. Also, magma volumes of smaller dimensions than about 800 m cannot be detected with this method. If a considerable molten volume exists under Hekla, it must be located either above 4 km or below 14 km. The former possibility seems unlikely, because Hekla lacks geothermal activity and persistent seismicity, usually taken as expressions of a shallow magma chamber. An aseismic volume with a diameter of 4 km at the depth of 8 km in the west part of Torfajökull has been inferred in earlier studies and interpreted as evidence for a cooling magma chamber. Our results indicate that this volume cannot be molten to a great extent because S-waves travelling through it are not attenuated. Intense geothermal activity and low-frequency earthquakes are possibly signs of magma in the south part of Torfajökull, but a magma chamber was not detected there in the areas sampled by this study.Editorial responsibility: T. Druitt  相似文献   
32.
Volcanic tremor at the Hekla volcano is directly related to eruptive activity. It starts simultaneously with the eruptions and dies down at the end of them. No tremor at Hekla has been observed during non-eruptive times. The 1991 Hekla eruption began on 17 January, after a short warning time. Local seismograph stations recorded small premonitory earthquakes from 16:30 GMT on. At 17:02 GMT, low-frequency volcanic tremor became visible on the seismograph records, marking the onset of the eruption. The initial plinian phase of the eruption was short-lived. During the first day several fissures were active but, by the second day, the activity was already limited to a segment of one principal fissure. The eruption lasted almost 53 days. At the end of it, during the early hours of 11 March, volcanic tremor disappeared under the detection threshold and was followed by a swarm of small earthquakes. At the start of the eruption, the tremor amplitude rose rapidly and reached a maximum in only 10 min. The tremor was most vigorous during the first hour and started to decline sharply during the next hour, and later on more gently. During the eruption as a whole, the tremor had a continuous declining trend, with occasional increases lasting up to about 2 days. Spectral analysis of the tremor during the first 7 h of the eruption shows that it settled quickly, within a couple of minutes, to its characteristic frequency band, 0.5–1.5 Hz. The spectrum had typically one dominant peak at 0.7–0.9 Hz, and a few subdominant peaks. Hekla tremor likely has a shallow source. Particle motion plots suggest that it contains a significant component of surface waves. The tremor started first when the connection of the magma conduit with the atmosphere was reached, suggesting that degassing may contribute to its generation.  相似文献   
33.
34.
Exploration successes for volcanogenic massive sulfide (VMS) deposits, such as Kudz Ze Kayah, Wolverine and Fyre Lake in the Yukon–Tanana Terrane and Slide Mountain Terrane (southern Yukon Territory) have spurred interest in the correlative rocks in the Big Salmon Complex in northern British Columbia. In an effort to further the utility of multi-media stream geochemistry in exploration frontiers that are forested, heavily drift covered, or buried, the primary streams of 19 watersheds from the East Teslin Lake (National Topographic System (NTS): 104N/9, 16) and Teh Creek areas (NTS: 104O/11, 12, 13, 14) of the Big Salmon Complex were analyzed for Cu, Pb, and Zn and other parameters in the dissolved load, suspended load and bed load. Traditionally, exploration based on stream geochemistry has employed the bed load and more recently the dissolved load chemistry, but almost never the suspended load despite strong differences in the geochemical signatures of the three media. Here, we document that copper, lead, and zinc partition into the dissolved, suspended, and bed loads differently and that the magnitude of anomalies is different for each media. The adsorbing capacity of the suspended load may make it a more sensitive indicator of mineral deposits on a regional basis than either the trace-element-poor dissolved load or the bulk-rock-diluted bed load which are likely better indicators of local mineralization. It is clear that each phase contributes unique information about the distribution of elements in the watershed that could be considered in exploration models.We also show that summing standardized element concentrations and summing the sums across media appears to be an effective method to reduce the data without loss of important information. We likewise investigated the utility of calculating major element normalized enrichments for exploration and find that it is a promising approach.  相似文献   
35.
Water column optical properties of Greater Florida Bay were investigated in the context of their impacts on seagrass distribution. Scattering played an important role in light attenuation throughout the shallow water system. The northwest region was characterized by an absence of seagrasses and the highest scattering by particles, mostly from resuspended carbonate sediments. Higher seagrass densities were observed in the open waters just north of the Florida Keys, where absorption coefficients were dominated by colored dissolved organic material and scattering was lower than in the northwest region. Patchy dense seagrass meadows were observed in the clear waters south of the Keys where scattering and absorption were low and contributed equally to light attenuation. In general, seagrasses were observed in areas where >7.5% of surface irradiance reached the plants and where optical properties were not dominated by scattering. Although the prevention of eutrophication and nuisance algal blooms may be necessary for preserving seagrass meadows in this system, our observations and model calculations indicate that nutrient control alone may be insufficient to permit seagrass recolonization if optical properties are dominated by particulate scattering from resuspended sediments.  相似文献   
36.
We report observations of Neptune made in H-(1.4–1.8 μm) and K’-(2.0–2.4 μm) bands on 14 and 16 July 2009 from the 10-m W.M. Keck II Telescope using the near-infrared camera NIRC2 coupled to the Adaptive Optics (AO) system. We track the positions of 54 bright atmospheric features over a few hours to derive their zonal and latitudinal velocities, and perform radiative transfer modeling to measure the cloud-top pressures of 50 features seen simultaneously in both bands. We observe one South Polar Feature (SPF) on 14 July and three SPFs on 16 July at ~65?°S. The SPFs observed on both nights are different features, consistent with the high variability of Neptune’s storms. There is significant dispersion in Neptune’s zonal wind velocities about the smooth Voyager wind profile fit of Sromovsky et al. (Icarus, 105:140, 1993), much greater than the upper limit we expect from vertical wind shear, with the largest dispersion seen at equatorial and southern mid-latitudes. Comparison of feature pressures vs. residuals in zonal velocity from the smooth Voyager wind profile also directly reveals the dominance of mechanisms over vertical wind shear in causing dispersion in the zonal winds. Vertical wind shear is not the primary cause of the difference in dispersion and deviation in zonal velocities between features tracked in H-band on 14 July and those tracked in K’-band on 16 July. Dispersion in the zonal velocities of features tracked over these short time periods is dominated by one or more mechanisms, other than vertical wind shear, that can cause changes in the dispersion and deviation in the zonal velocities on timescales of hours to days.  相似文献   
37.
The retention of particles within meadows of submerged aquatic vegetation impacts the fate of organic matter, pollen, and larvae. Because flow conditions near the leading edge differ from those over the bulk of the canopy, particle retention is likely to differ as well. In particular, near the leading edge of a wide meadow, flow deceleration generates a vertical updraft, which impacts particle fate. In the fully developed region of the meadow, shear layer vortices at the top of the meadow may also influence particle fate. In this study, the retention of particles was measured along the length of a 10-m model meadow (height h?=?0.1 m) and was connected to the evolving flow field. Two particle sizes, with settling velocity w s50?=?0.00075?,?0.018 m s?1, were released at two heights within the model meadow \( \left(\frac{Z_{rel}}{h}=0.31,0.81\right). \) The retention of particles was measured using microscope slides distributed along the flume bed. Retention increased with distance from the leading edge, associated with the decrease in vertical updraft. Retention was also greater for the particles with higher settling velocity. In the fully developed region of the meadow, particle retention was lower for particles influenced by the shear layer vortices at the top of the meadow (\( \frac{Z_{rel}}{h}=0.81 \)).  相似文献   
38.
Laminated sediments in Lake Ohau, Mackenzie Basin, New Zealand, offer a potential high‐resolution climate record for the past 17 kyr. Such records are particularly important due to the relative paucity of detailed palaeoclimate data from the Southern Hemisphere mid‐latitudes. This paper presents outcomes of a study of the sedimentation processes of this temperate lake setting. Hydrometeorological, limnological and sedimentological data were collected over a 14 month period between 2011 and 2013. These data indicate that seasonality in the hydrometeorological system in combination with internal lake dynamics drives a distinct seasonal pattern of sediment dispersal and deposition on a basin‐wide scale. Sedimentary layers that accumulate proximal to the lake inflow at the northern end of the lake form in response to discrete inflow events throughout the year and display an event stratigraphy. In contrast, seasonal change in the lake system controls accumulation of light (winter) and dark (summer) laminations at the distal end of the lake, resulting in the preservation of varves. This study documents the key processes influencing sediment deposition throughout Lake Ohau and provides fundamental data for generating a high‐resolution palaeoclimate record from this temperate lake.  相似文献   
39.
A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan–Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70–85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).  相似文献   
40.
A multigrid Markov mesh model for geological facies is formulated by defining a hierarchy of nested grids and defining a Markov mesh model for each of these grids. The facies probabilities in the Markov mesh models are formulated as generalized linear models that combine functions of the grid values in a sequential neighborhood. The parameters in the generalized linear model for each grid are estimated from the training image. During simulation, the coarse patterns are first laid out, and by simulating increasingly finer grids we are able to recreate patterns at different scales. The method is applied to several tests cases and results are compared to the training image and the results of a commercially available snesim algorithm. In each test case, simulation results are compared qualitatively by visual inspection, and quantitatively by using volume fractions, and an upscaled permeability tensor. When compared to the training image, the method produces results that only have a few percent deviation from the values of the training image. When compared with the snesim algorithm the results in general have the same quality. The largest computational cost in the multigrid Markov mesh is the estimation of model parameters from the training image. This is of comparable CPU time to that of creating one snesim realization. The simulation of one realization is typically ten times faster than the estimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号